Vision, Hearing, & Other Senses

- Transduction the transforming of stimulus energies into neural impulses
- I. Vision
 - A. The Stimulus Input: Light Energy
 - 1. wavelength distance from one peak to the next; determines hue the color we experience
 - 2. **intensity** the amount of energy in a light or sound wave which we perceive as brightness or loudness, as determined by the wave's *amplitude*.

B. The Eye

- 1. pupil the adjustable opening in the center of the eye through which light enters
- 2. iris ring of muscle tissue, forms colored portion of eye, controls size of pupil opening
- 3. lens transparent structure behind the pupil that changes shape to focus image on retina a. accommodation – process by which the eye's lens changes shape to focus near/far objects on the retina
- 4. **retina** light-sensitive inner-surface of the eye, containing receptor *rods* and *cones* plus layers of neurons that begin the processing of visual information
 - a. receives images upside-down; impulses constructed into upright-seeming image in brain
 - b. **rods** retinal receptors that detect *black, white,* & *grey*; necessary for peripheral and twilight vision, when cones don't respond
 - c. **cones** retinal receptors that detect *fine detail* and give rise to *color sensations*, concentrated near the center of the retina and that function in daylight or well-lit conditions
 - d. **optic nerve** bundles axons that carry neural impulses from the eye to the brain; capable of sending a million messages at once
 - e. fovea the central focal point in the retina, around which the cones cluster
- 5. **acuity** sharpness of vision; affected by small distortions in shape of eye
 - a. **nearsightedness** nearby objects seen more clearly than distant objects because distant objects focus *in front* of retina
 - several studies have suggested that children who sleep with a night light have an increased chance of becoming nearsighted (Quinn, 1999).
 - b. **farsightedness** faraway objects are seen more clearly than near objects because near objects focus *behind* the retina
- C. Visual Information Processing
 - 1. **Feature Detectors** nerve cells in the brain that respond to specific features of a stimulus, such as edges, shape, angle, or movement.
 - 2. **Parallel Processing** the processing of several aspects of a problem *simultaneously*; the brain's natural mode of information processing for many functions, including vision
 - contrasts with serial (*step-by-step*) processing of most computers and of conscious problem solving
 - retina sends neural impulses to several areas of visual cortex, which is then integrated by the brain
 - example: facial recognition requires 30 percent of the cortex, <u>10 times</u> the area the brain devotes to hearing

- D. Color Vision
 - the objects we see are everything *but* the color we see, because they *reject* (reflect) that specific wavelength of light
 - our difference threshold for colors is so low that we can discriminate some 7 million different color variations

1. Young-Helmholtz Trichromatic (three-color) theory

- the retina contains three different color receptors – red, green, and blue – which when stimulated in combination can produce the perception of any color

2. Hering's Opponent Process Theory

- opposing retinal processes (red-green, yellow-blue, white-black) enable color vision; some cells are stimulated by green and inhibited by red; others are stimulated by red and inhibited by green and inhibited by red; others are stimulated by red and inhibited by green.
- explains afterimages

II. Hearing (audition)

- A. The Stimulus Input: Sound Waves
 - 1. amplitude determines loudness
 - decibels are the measuring unit for sound energy
 - every 10 decibels correspond to a tenfold increase in sound (exponential increase)

2. **frequency** – the number of complete wavelengths that pass a point in a given time - determines **pitch** – a tone's highness or lowness

B. The Ear

- 1. Outer Ear channels sound waves to eardrum which vibrates with the waves
- 2. **Middle Ear** transmits eardrum's vibrations through a piston made of three very tiny bones (hammer, anvil, stirrup) to the cochlea's oval window
- 3. Inner Ear contains the cochlea a coiled, bony, fluid-filled tube through which sound waves trigger nerve impulses
 - basilar membrane is lined with hair cells which when bent trigger impulses in adjacent nerve fibers, which converge to form the auditory nerve
 hair cells are delicate and fragile

C. How Do We Perceive Pitch?

- 1. **Place Theory** links the pitch we hear with the place where the cochlea's membrane is stimulated
 - high frequencies produce large vibrations near the beginning of the cochlear membrane
- 2. **Frequency Theory** the rate of nerve impulses traveling up the auditory nerve matches the frequency of a tone, thus enabling us to sense its pitch
 - explains how we sense low pitches as neurons cannot fire faster than 1000 times/second
- 3. Volley Principle neural cells alternate firing in rapid succession, achieving a combined frequency *above* 1000 times/second
 - explains how we perceive pitches in the intermediate range

D. Hearing Loss

- 1. **Conduction Hearing Loss** caused by damage to the mechanical system that conducts sound waves to the cochlea
- Sensorineural Hearing Loss (nerve deafness) caused by damage to the cochlea's receptor cells or to the auditory nerves
 once destroyed, these tissues remain dead

III. Body Position and Movement

- A. Kinesthetic Sense the system for sensing the position and movement of individual body parts
- B. Vestibular Sense the sense of body movement and position, including the sense of balance

- semicircular canals – receptors send messages to the cerebellum, enabling us to sense our body position and to maintain our balance